Understanding conditions for which biological effects of nonionizing electromagnetic fields can be expected.

نویسنده

  • James C Weaver
چکیده

Scientific interest in the interaction of nonionizing electromagnetic fields with biological systems is longstanding, but often still controversial. Theories, models and computer simulations have usually emphasized physical interactions with subsystems (e.g. cell membranes) of a biological system. By extending this first necessary physical step to a second step of explicitly and quantitatively considering chemical changes, increased understanding appears possible. In the case of "strong fields", the role of field-altered chemistry is important to electrochemotherapy [Biochem. Pharmacol. 42, Suppl. (1991) 567] and creation of transdermal microconduits [Bioelectrochem. Bioenerg. 49 (1999) 11; J. Controlled Release 61 (1999) 185; J. Invest. Dermatol. 116 (2001) 40] For "weak fields" (a topic with much more controversy) consideration of chemical change shows that organized multicellular systems can be understood to respond to extremely small electric [Chaos 8 (1998) 576] or magnetic fields [Nature 405 (2000) 707]. In contrast, isolated individual cells interacting via voltage-gated channels [Proc. Natl. Acad. Sci. 92 (1995) 3740; Biophys. J. 75 (1998) 2251; Bioelectromagnetics 20 (1999) 102], or processes without "temperature compensation" [Biophys. J. 76 (1999) 3026], appear implausible. Satisfactory understanding is likely only if experimental and theoretical work is reconciled, which should therefore be emphasized. The interaction of electromagnetic fields with biological systems is of interest because of fundamental scientific curiosity, potential medical benefits and possible human health hazards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiofrequency Electromagnetic Fields: Carcinogenic and Other Biological Effects

In the electromagnetic spectrum, structural damage to living tissues per unit of absorbed energy tends to increase with the decrease of a wavelength which is evident not only for ultraviolet and ionizing radiation but also for the infrared and visible light. By causing thermal damage after absorbing energies that would be harmless for radiofrequency electromagnetic fields (EMF), tissues are eve...

متن کامل

Radiofrequency Electromagnetic Fields: Carcinogenic and Other Biological Effects

In the electromagnetic spectrum, structural damage to living tissues per unit of absorbed energy tends to increase with the decrease of a wavelength which is evident not only for ultraviolet and ionizing radiation but also for the infrared and visible light. By causing thermal damage after absorbing energies that would be harmless for radiofrequency electromagnetic fields (EMF), tissues are eve...

متن کامل

Effect of extremely low frequency electric field on liver, kidney, and lipids of Wistar rats

generating stations, distribution lines, high voltage (HV) lines, and electric appliances. Increased speed of urbanization and per capita increase in the utilization of electricity is forcing all kinds of living bodies to be exposed to electromagnetic environment created by man-made sources. To meet the increased demands, electric power generation, distribution, and transmission networks are al...

متن کامل

Testing and Validating the Role of Interactive Information Retrieval Model in Faculty Members' psychological Enabling: A Case Study of Alborz University of Medical Sciences

The term "electromagnetic fields" (EMF) is a combination of electric and magnetic fields as a diagnostic method as well as a therapeutic tool with many advantages such as ease of operation and painlessness, very controllable, which today has found wide application in regenerative medicine and also cancer treatment.  In addition to organs such as nerves, hearts, and bones that have an electrica...

متن کامل

The Effect of Prolonged Exposure to Low-Frequency Electromagnetic Fields on the Cholinergic System in the Small Intestine of Male Rat

Background & Aims: In the recent years, increasing rate of using electronic devices which generate electromagnetic fields , has caused researchers, attention to the effects of electromagnetic fields on human health. The aim of this study is to investigate the effect of prolonged exposure to extremely low frequency electromagnetic fields(ELF) on the Cholinergic system in the small intestine of r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectrochemistry

دوره 56 1-2  شماره 

صفحات  -

تاریخ انتشار 2002